Delayed instantiation bulk
operations for management
of distributed, object-based

storage systems

Andrew J. Klosterman
August 2009
CMU-PDL-09-108

Dept. of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Thesis committee

Prof. Greg Ganger, Chair (Carnegie Mellon University)
Mr. Craig Harmer (Symantec)

Dr. Sami Iren (Seagate)

Prof. Dave O’Hallaron (Carnegie Mellon University)

© 2009 Andrew J. Klosterman

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
AUG 2009 2. REPORT TYPE 00-00-2009 to 00-00-2009
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Delayed instantiation bulk operationsfor management of distributed, £b. GRANT NUMBER

object-based storage systems
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Carnegie Mellon University,Parallel Data REPORT NUMBER
Laboratory,Pittsburgh,PA,15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Sa_me as 255
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Abstract

The basic distributed, object-based storage system model lacks features for storage man-
agement. This work presents and analyzes a strategy for using existing facilities to im-
plement atomic operations on sets of objects. These bulk operations form the basis for
managing snapshots (read-only copies) and forks (read-write copies) of portions of the
storage system. Specifically, we propose to leverage the access control capabilities, and
annotations at the metadata server, to allow for selective clone and delete operations on
sets of objects.

In order to act upon a set of objects, a bulk operation follows these steps. First, the
metadata server accepts the operation, contacts the storage nodes to revoke outstanding
capabilities on the set of objects, and retains a record of the operation and the affected set of
objects. At this point, clients can make no changes to existing objects since any capabilities
they hold will be rejected by storage nodes. Second, when clients subsequently contact the
metadata server to access affected objects (e.g., acquire fresh capabilities), any records of
bulk operations are consulted. Finding that a client is accessing an affected object, the
metadata server will take the necessary steps to enact the uninstantiated operation before
responding to the client request. This eventual enforcement of operation semantics ensures
compliance with the operation’s intent but delays the corresponding work until the next
client access. With appropriate background instantiation, the work of instantiating bulk
operations can be hidden from clients.

In this dissertation, we present algorithms suitable for performing bulk operations over
distributed objects using m —of —n encodings. The core logic is concentrated at the meta-
data server, with minimal support at clients and storage nodes. We quantify the overheads

ABSTRACT i

associated with the implementation and describe schemes for mitigating them. We demon-
strate the use of bulk operations to create snapshots in an NFS server running atop dis-
tributed, object-based storage.

Acknowledgements

I thank the members and companies of the PDL Consortium throughout my doctoral career
(APC, Cisco, EMC, Engenio, Equallogic, Google, HGST, Hewlett-Packard, Hitachi, IBM,
Intel, LSI, Microsoft, NetApp, Oracle, Panasas, Seagate, Sun, Symantec and Veritas) for
their interest, insights, feedback, and support. Experiments were enabled by hardware
donations from APC, IBM, Intel, NetApp, and Seagate. This material is based on research
sponsored in part by the National Science Foundation, via grant #CNS-0326453, by the
Air Force Research Laboratory, under agreement number F49620-01-1-0433, and by the
Army Research Office, under agreement number DAAD19-02-1-0389.

Contents

Abstract

Acknowledgements

1

Introduction

11
1.2
1.3
14
1.5

Distributed, object-based storage
Storage management and operations upon objectsets
Thesisstatement.
Bulk operations for storage management
Roadmap

Background and related work

2.1
2.2
2.3
2.4

Distributed, object-based storage
Broader references
Cloning, snapshots and storage management
System components
24.1 Objects
242 Capabilities
2.4.3 Datadistribution o
244 Client e
245 Storagenode
246 Metadataserver

CONTENTS

3 Delayed instantiation bulk operations
3.1 Placement of responsibility

3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.11
3.1.2
3.1.3

Bulk operations at the storagenodes
Bulk operations attheclient
Bulk operations at the metadataserver

Groupingobjects
BulkClone e
BulkDelete
Delayed instantiation
Bulk operationtracking
Completion and success criteria
Mitigating costs

4 Implementation

4.1 Client

4.2
4.3

4.4
4.5
4.6

Storagenode
Metadata server
431 Front-end
432 Back-end
433 Helper.
Background instantiation
NFESserver e
Protocol
46.1 Create e
4.6.2 LOOKUP o
4.6.3 Enumerate
46.4 Delete.
465 Write
46.6 Read
4.6.7 BulkDelete

4.6.8

BulkClone

21
21
22
24
24
25
26
28
29
31
32
34

CONTENTS

5 Data structures and algorithms

5.1

5.2

5.3

5.4

5.5

Datastructures
5.1.1 SequencCer
512 Objecttable
5.1.3 BulkDeletetable
514 BulkClonetable
5.15 Object metadatatables
Implications of bulk operations
521 BulkClone
522 BulkDelete
Corealgorithms
531 GetMDOID
5.3.2 InstantiatePassThroughLimits
5.3.3 InstantiateHole
534 DIvorce e
Coreoperations
5.4.1 Enumerate
542 Create
543 Lookup
COITectness e e
5.5.1 Initial bulk operation processing
5.5.2 Bulk operation instantiation 0L

6 Evaluation

6.1

6.2

Experimental setup
6.1.1 Data collection and instrumentation
6.1.2 Workload scripting
Baseline behavior
6.2.1 Database access experiment
6.2.2 Capability experiments
6.23 Create

Vi

57
57
57
58
58
59
59
59
60
62
64
64
66
68
71
72
73
74
74
75
75
77

CONTENTS vii

6.24 Write e 89
6.25 Read 98
6.3 BulkDelete 102
6.4 BulkClone 106
6.4.1 Comparing chains-of-clones and prolificclones 106
6.4.2 Accessafter BulkClone. 106
6.5 Backgroundinstantiation L. 109
6.5.1 Non-competitive background instantiation 111
6.5.2 Background instantiation with paced foreground workload 112
6.5.3 Random bulk operation background instantiation 117
6.5.4 FIFO bulk operation background instantiation 119
6.5.5 LIFO bulk operation background instantiation 124

6.5.6 Widest span of objects bulk operation background instantiation . . . 128
6.5.7 Thinnest span of objects bulk operation background instantiation . . 131

6.6 NFSserver 135
6.6.1 Baselinebehavior L. 135

6.6.2 PostMark 137

6.7 SUMMArY 140

7 Conclusions and future work 142
Bibliography 148
A Experimental results 156
A.1l Baseline behaviorresults L. 157
A.1.1 Database access experimentresults 157

A.1.2 Capability experimentresults 158

A.1.3 Createexperimentresults. 160

A.l.4 Write experimentresults L. 164

A.1l5 Readexperimentresults, 179

A.2 BulkDelete experimentresults oL 187

CONTENTS viii

A3
A4
A5
A.6

BulkClone experimentresults., 189
Background instantiation experimentresults 193
NFS server baselineresults 221
PostMark experimental results 229

List of Tables

6.1 Write() operation differences with bulk operations 93
6.2 Re-Read() operation differences with bulk operations 99
6.3 Paced Create after BulkDelete with background instantiation 113
6.4 Paced Read after BulkClone with background instantiation 116
6.5 NFS File Create/Clone/Delete benchmark summary 136
6.6 Summary of PostMarkresults L 139
A.1 Ping metadata server back-end database 157
A.2 Acquiring storage node addressing information 158
A3 Capability revocation 159
A.4 Create(), sequential, no bulk operation code, no background instantiation . . 160
A.5 Create(), random, no bulk operation code, no background instantiation . . . 161
A.6 Create(), sequential, bulk operation code, no background instantiation . . . 162
A.7 Create(), random, bulk operation code, no background instantiation 163

A.8 Lookup(), sequential, no bulk operation code, no background instantiation . 164
A.9 ApproveWrite(), sequential, no bulk operation code, no background instan-

tiation 165
A.10 SSIO_Write(), sequential, no bulk operation code, no background instanti-

ation 166
A.11 Finish_Write(), sequential, no bulk operation code, no background instan-

tiation 167

A.12 Write(), sequential, no bulk operation code, no background instantiation . . 168

LIST OF TABLES X

A.13 Lookup(), sequential, active bulk operation code, no background instantiation169
A.14 ApproveWrite(), sequential, bulk operation code, no background instantiation170
A.15 SSI0_Write(), sequential, active bulk operation code, no background in-

stantiation L L 171
A.16 Finish_Write(), sequential, bulk operation code, no background instantiation 172
A.17 Write(), sequential, bulk operation code, no background instantiation 173

A.18 Re-Write(), sequential, no bulk operation code, no background instantiation 174
A.19 Re-Write(), revoked caps, sequential, no bulk ops, no background instanti-

ation 175
A.20 Cache-hit re-Lookup(), seq, no bulk ops, no background instantiation 176
A.21 Re-Lookup() to MDS, seq, no bulk ops, no background instantiation 177
A.22 SSIO _Write() after revoke, seq, no bulk ops, no background instantiation . . 178
A.23 Read(), sequential, no bulk operation code, no background instantiation . . 179
A.24 Read(), sequential, no bulk operation code, no background instantiation,

invalidcaps 180
A.25 Lookup(), fast, bad caps, sequential, no bulk operation code, no back-

ground instantiation L 181
A.26 SSIO_Read(), fast, bad caps, sequential, no bulk operation code, no back-

ground instantiation L 182
A.27 Lookup(), slow, bad caps, sequential, no bulk operation code, no back-

ground instantiation 183
A.28 SSIO_Read(), slow, bad caps, sequential, no bulk operation code, no back-

ground instantiation L 184
A.29 Read(), sequential, bulk operation code, no background instantiation, in-

validcaps 185
A.30 Lookup(), slow, bad caps, sequential, with bulk operation code, no back-

ground instantiation L 186
A.31 BulkDelete of single objects, sequential, no background instantiation 187

A.32 Create after BulkDelete of single objects, sequential, no background in-
stantiation L 188

LIST OF TABLES Xi

A.33 Repeated BulkClone of 1000 objects, prolific 189
A.34 Repeated BulkClone of 1000 objects, chain-of-clones 190
A.35 Read of BulkClone source objects 191
A.36 Read of BulkClone destination objects 192
A.37 Create after BulkDelete and completed background instantiation 193
A.38 Read after BulkClone and completed background instantiation 194
A.39 Create after BulkDelete 1:1 withSleep 195
A.40 Create after BulkDelete 1:3withSleep 196
A.41 Create after BulkDelete 1:7 with Sleep 197
A.42 Read after BulkClone 1:1with Sleep 198
A.43 Read after BulkClone 1:3with Sleep 199
A.44 Read after BulkClone 1:7 withSleep 200
A.45 Random Read after BulkClone with Random background instantiation . . . 201

A.46 Sequential Read after BulkClone with Random background instantiation . . 202
A.47 Random Create after BulkDelete with Random background instantiation . . 203
A.48 Sequential Create after BulkDelete with Random background instantiation . 204

A.49 Random Read after BulkClone with FIFO background instantiation 205
A.50 Sequential Read after BulkClone with FIFO background instantiation . . . 206
A.51 Random Create after BulkDelete with background instantiation via FIFO
ProCeSSING o o v 207
A.52 Sequential Create after BulkDelete with background instantiation via FIFO
ProCeSSING . . . v o o v e e e 208
A.53 Random Read after BulkClone with LIFO background instantiation 209
A.54 Sequential Read after BulkClone with LIFO background instantiation . . . 210
A.55 Random Create after BulkDelete with background instantiation via LIFO
ProCeESSING v v o e 211
A.56 Sequential Create after BulkDelete with background instantiation via LIFO
ProCeSSING . . . v o o v e e e e 212

A.57 Random Read after BulkClone with background instantiation of widest range213

LIST OF TABLES Xii

A.58 Sequential Read after BulkClone with background instantiation of widest

FANGE . . o e 214
A.59 Random Create after BulkDelete with background instantiation via widest

ranNge ProCesSINg . . . v v v v v e e e e e e e e 215
A.60 Sequential Create after BulkDelete with background instantiation via widest

Fange ProcessSiNg . . . v v v e e e e 216
A.61 Random Read after BulkClone with thinnest range background instantiation 217
A.62 Sequential Read after BulkClone with thinnest range background instanti-

ation 218
A.63 Random Create after BulkDelete with background instantiation via thinnest

range ProCesSiNg . . . v v v v v e e e e e e 219
A.64 Sequential Create after BulkDelete with background instantiation via thinnest

Fange ProcessiNg . . . o v v e e e 220
AB5 NFSFileRemove 222
A.66 NFS Filecloneviacopy 223
A.67 NFS File Remove after cloneviacopy 224
A.68 NFS prolificBulkClone L. 225
A.69 NFS File Remove after prolific BulkClone 226
A.70 NFS chain-of-clones BulkClone 227
A.71 NFS File Remove after chain-of-clones BulkClone 228
A.72 PostMark with no bulk operations 229
A.73 PostMark with CloneviaCopy 230
A.74 PostMark with prolificclones 231
A.75 PostMark with chains-of-clones 232
A.76 PostMark with prolific clones and random background instantiation 233
A.77 PostMark with prolific clones and LIFO background instantiation 234
A.78 PostMark with prolific clones and thinnest range background instantiation . 235
A.79 PostMark with chains-of-clones and random background instantiation . . . 236

A.80 PostMark with chains-of-clones and LIFO background instantiation 237

LIST OF TABLES

A.81 PostMark with chains-of-clones and thinnest range background instantia-
tion . . e

Xiii

List of Figures

2.1
2.2
2.3

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411

5.1
5.2
5.3
5.4

Systemmodel 12
Capability acquisitionanduse 14
Multiple data distributions for a single object 15
Two manners of using the clone operation 27
Bulk operation process 30
NFS server as storage systemclient 43
Directory contents aftercloning 45
Create and Re-Create with BulkDelete 48
Lookup with BulkClone, 49
Protocol for Enumerate 50
Protocol forDelete 51
Write protocol with allocation 52
Write triggering instantiation ofaclone 53
Read triggering instantiation ofaclone 54
BulkDelete 55
BulkClone 56
Prolificclones 60
Achain-of-clones 61
Pass-through cloneexample 67
Use case for InstantiateHole function 69

Xiv

LIST OF FIGURES XV

5.5
5.6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27

Initial bulk operation processing 76
Instantiation of a bulk operation 77
Create operation timing comparison 88
Write protocol with allocation and extra Lookup 91
Write timing comparison 96
Re-Write timing comparison 97
Read timing comparison with invalid capabilities 100
Re-Read timing comparison 101
BulkDelete and re-Create of pre-existing objects 102
Components of Create at the Metadata Server 105
Components of the Instantiate_Hole subroutine 105

Read of source objects after BulkClone performing on-demand instantiation 108
Read of destination objects after BulkClone performing on-demand instan-

tlation 108
Experiment description for create, write, clone, and read of objects. 110
Experiment description for create, write, delete, and read of objects. 111
Paced Create after BulkDelete. 114
Paced Read after BulkClone. 115
Random Read after BulkClone with Random background instantiation . . . 118

Sequential Read after BulkClone with Random background instantiation . . 118
Random Create after BulkDelete with Random background instantiation . . 120
Sequential Create after BulkDelete with Random background instantiation . 120

Random Read after BulkClone with FIFO background instantiation 121
Sequential Read after BulkClone with FIFO background instantiation . . . 121
Random Create after BulkDelete with FIFO background instantiation . . . 123
Sequential Create after BulkDelete with FIFO background instantiation . . 123
Random Read after BulkClone with LIFO background instantiation 125
Sequential Read after BulkClone with LIFO background instantiation . . . 125
Random Create after BulkDelete with LIFO background instantiation . . . 127

Sequential Create after BulkDelete with LIFO background instantiation . . 127

LIST OF FIGURES XVi

6.28
6.29

6.30

6.31

6.32
6.33

6.34

6.35

6.36

Random Read after BulkClone with background instantiation of widest range129
Sequential Read after BulkClone with background instantiation of widest
FANGE . . o o 129
Random Create after BulkDelete with background instantiation of widest
FANOE . . o e 130
Sequential Create after BulkDelete with background instantiation of widest
FANOE 130
Random Read after BulkClone with thinnest range background instantiation 132
Sequential Read after BulkClone with thinnest range background instanti-

Random Create after BulkDelete with background instantiation of thinnest

FANGE . . o e 134
Sequential Create after BulkDelete with background instantiation of thinnest
FANGE . . . o e 134
PostMark configuration for NFS experiments. 138

Chapter 1
Introduction

Distributed, object-based storage has come into its own through the past decade. Pioneered
as the NASD project in the mid- to late-1990’s [29], various incarnations of this storage
model have been discussed in academic [1, 30, 78, 80] and industrial [6, 8, 19, 25, 28, 43,
56, 57, 66] circles. Characteristics of these systems include (1) variably sized objects as
containers for data storage, (2) a large, flat namespace for object naming, (3) capabilities
for access control, (4) direct access by clients to storage nodes for scalable performance,
and (5) a metadata server for control of object metadata and the namespace.

New challenges arise for storage management in this architecture. Management opera-
tions in traditional storage systems have a centralized location through which all accesses
pass. For instance, a network attached file server serves as a centralized arbiter of ac-
cess and, during client accesses, can ensure that management operations across all files
are enforced. In a distributed, object-based storage system, en masse operations on ob-
jects require coordination among the three prime members of the distributed, object-based
storage system: clients, storage nodes, and the metadata server. In multi-tenant situations,
where many customers simultaneously operate upon a shared storage system, the isolation
of management operations for performance and access-control reasons becomes a storage
management concern.

CHAPTER 1. INTRODUCTION 2

1.1 Distributed, object-based storage

This dissertation specifically addresses issues related to distributed, object-based storage
systems. These systems are distributed insofar as their components are interconnected by
a communication network and need not be physically close together (although proximity
is likely). Common distributed systems problems are faced: communication, agreement,
authentication, authorization, fault-tolerance, etc. Objects are the containers for storage in
these systems. An object has an integer name from a large namespace (e.g., 128 bits) and
a byte-addressable data component. Such systems consist of three primary participants:
clients, metadata server, and storage nodes. Clients drive data access by creating, deleting,
reading and writing objects. The metadata server authorizes client actions by responding
to access requests with metadata and capabilities (software tokens denoting access permis-
sion) and controlling the existence of objects. Storage nodes respond to client requests
submitted with valid capabilities.

Persistent storage of the information in an object is a responsibility split between the
separate, but intricately interrelated, components of the distributed, object-based storage
system. As a first consideration, the simple existence of an object is controlled. This
is the proper job of a namespace server: recording which objects exist, or do not exist,
within the namespace. For our purposes, we will combine the functioning of the namespace
server and metadata server, referring only to the metadata server throughout the rest of
this dissertation. As a second point, the metadata server is responsible for tracking of
information about how the data of an object is stored. The metadata consists of such items
as the length of the object’s data component and the names of the storage nodes upon which
portions of that data are stored. The third aspect of persistent storage concerns the storage
nodes. They are the ultimate repository of the information in an object’s data component
and are responsible for persistent storage (i.e., placing the data on a storage device and
retrieving it when requested). The clients, of course, populate objects with data based on
metadata stored at the metadata server and write that data to storage nodes. Coordinating
actions among all of these components complicates efforts to perform an operation upon a
set of objects.

CHAPTER 1. INTRODUCTION 3

1.2 Storage management and operations upon object sets

Storage management involves the care and maintenance of storage systems to meet per-
formance, availability and reliability goals expected for accessing the stored data. Tasks
for meeting these goals include, but are not limited to, selection of data storage encodings
(e.g., RAID levels), migration of data between storage devices, reclamation of space, man-
agement of access, control of quotas, and replication for enhancing read-only performance,
disaster tolerance, and archive. In common network-attached file system servers, storage
management tasks are concentrated at that file server. The less-centralized nature of dis-
tributed, object-based storage systems complicates matters. Without centralized control or
complex distributed algorithms, such systems could struggle to perform management tasks.

Applying management tasks to large portions of a storage system is common. For
example, an entire file system might be copied to an off-site location for disaster recovery
purposes. Or, a block-storage volume might be destroyed to reclaim or re-purpose storage
system capacity. A volume-based storage system, like AFS [40], could move a volume
between servers for load-balancing. For a distributed, object-based storage system, the set
of objects upon which to operate must be an argument to the calls initiating management
tasks.

This dissertation explores the approach of bringing centralized control of distributed,
object-based storage systems to the metadata server where management tasks can be per-
formed. We refer to the operations supporting storage management tasks as bulk operations
and target them against sets of objects. We desire the two key characteristics from the bulk
operations. First, they should quickly respond to requests for execution. Second, they
should operate atomically upon the affected objects. This all-or-nothing semantic simpli-
fies error handling should there be a problem with execution.

CHAPTER 1. INTRODUCTION 4

1.3 Thesis statement

This dissertation shows that . . .

A distributed, object-based storage system can provide atomic bulk op-
erations on compactly described and externally defined object sets using
delayed instantiation.

This is shown by the following sequence of steps:

1. Describing compact object set description approaches and how they can be used for
bulk operations in a distributed, object-based storage system.

2. Demonstrating delayed instantiation bulk operations in a prototype system.

3. Showing that background instantiation can be used to reduce the impact of delayed
instantiation bulk operations on subsequent accesses.

1.4 Bulk operations for storage management

The aforementioned bulk operations assist with storage management tasks along several
dimensions in distributed, object-based storage systems. First, they provide an interface
through which groups of objects can be manipulated. Second, they encapsulate the com-
plexity of the tasks in a way similar to a programming library interface: an easy-to-use
interface and simple semantics hide complex behind-the-scenes machinations. Third, by
grouping related objects together, an administrator can more easily manage portions of
a shared storage infrastructure (e.g., shared between distinct administrative or functional
entities in a business). Fourth, the atomic action of such operations simplifies understand-
ing of their effects, removes chances of side-effects, and allows for their confident use by
storage system administrators.

Given the complexity of storage systems, it behooves the architect to provide simple
ways for users to perform their tasks. The availability of bulk operations as a tool for

CHAPTER 1. INTRODUCTION 5

an administrator fills a sure need for storage management tasks. Without the sort of pre-
packaged bulk operations we examine, an administrator might forego the purchase of a
storage system or be forced to find another source for their implementation. The source
may come in the form of a commercially available software toolkit or home-made scripts —
neither of which are likely to be as efficient as if such capabilities were provided within the
storage system. With bulk operations included in a storage system at the point of initial de-
sign, efficient implementation and best-practices for use can be developed simultaneously
and offered to users.

Our implementation of bulk operations exploits a disconnect between the semantics of
execution and the instantiation of the intended effects of the operation. At execution time,
the storage system promises to honor an operation. However, it is not necessarily required
to immediately act on implementing the effects of the operation. The storage system only
needs to enforce that the intended effects of the operation are observable when clients in-
vestigate. Therefore, the work of actually instantiating the operation upon an object can be
delayed until such time as a client would observe the effects of the operation. This strategy
of delayed instantiation enforces operation semantics from a client-observable viewpoint
rather than an immediate execution strategy, which would perform all necessary work be-
fore returning a “success” code to the caller.

Let us take as an example the interaction of a bulk operation that deletes a group of
objects and an object create operation that fails if the target object to be created already
exists. Consider this situation: an object exists, is written and read, and then falls within
the group affected by a newly executed bulk delete operation. At this point, the storage
system may delay the instantiation of the delete operation upon the object; it can wait to
free the backing store of the object’s data component. It must only prevent access to the
existing data and disallow any listings of the object’s existence in the storage system’s
namespace. When a client wishes to create an object with the same name as the deleted
object, the storage system must free the backing store of the previous incarnation of the
object before allowing the new create operation to succeed. Thus, the semantics of the bulk
delete operation have been preserved and the instantiation of the operation delayed until a
client would come in conflict with the semantics.

CHAPTER 1. INTRODUCTION 6

1.5 Roadmap

The remainder of this dissertation is organized as follows. Chapter 2 describes related
work and the components of a distributed, object-based storage system. Chapter 3 presents
issues related to the design and implementation of bulk operations and describes the two
upon which we concentrate. Chapter 4 details the inner workings of our prototype client,
storage node, and metadata server that support bulk operations, describes the background
instantiation algorithms used to mitigate the costs of bulk operations, describes how an
NFS server can work with bulk operations, and presents the operations exposed to clients.
Chapter 5 describes the data structures and algorithms that support our implementation of
delayed instantiation bulk operations. Chapter 6 presents baseline behavior of the system,
calculates costs associated with the particular setup, evaluates the effects of bulk operations
and background instantiation, and shows how they are used by our NFS server. Chapter 7
summarizes our findings and describes possible future work. Appendix A includes tables
with summary statistics of operation execution times for experimental runs, benchmark
configuration, and raw data from experiments involving our NFS server.

Chapter 2
Background and related work

The bulk operations presented here provide support for the creation of selective snapshots
and forks within distributed, object-based storage systems. To provide background for
understanding of the system, this chapter describes object-based storage and storage man-
agement using snapshots and forks. The chapter concludes with descriptions of parts of the
particular storage system used for the realization of bulk operations.

First, we relate the system and thesis we are investigating to related work. Then, we
describe the system components.

2.1 Distributed, object-based storage

Distributed, object-based storage has evolved since the mid-1990’s to address scaling, per-
formance, and management issues with traditional block and file system storage system
architectures. Promulgated as the NASD system [29, 31], multiple storage nodes were
connected to computers using the storage via a communication network. With the net-
work as a scalable interconnect, storage nodes could be added to scale the capacity and the
bandwidth to the aggregate limits of the network and storage nodes [32].

The object model, as a container for data storage, assists this vision by acting as an in-
termediary data structure between the primitive interface of raw blocks and sophistication
of file systems. Block storage is exemplified by the SCSI interface [70], where all storage

CHAPTER 2. BACKGROUND AND RELATED WORK 8

locations on a device are blocks (consisting of a number of bytes) addressed by a block
number. Access to a block of data reads or writes it in its entirety. File systems provide an
abstraction of a file that can be accessed at byte granularity and navigated through directo-
ries (containers for files and other directories). Object-based storage fills the gap, pointed
out in 1980 [24], in the storage system hierarchy between files and blocks. This is further
elaborated upon in the IEEE Mass Storage System reference model [21]. Many examples
of file systems have been built to use object-based storage in academia [1, 30, 78, 80] and
in industry [6, 8, 19, 25, 28, 56, 57, 65, 66]. The standardization of an interface to object-
based storage has assisted efforts at expanding the applicability of the technology [43].

Object-based storage systems share some common characteristics. Unlike traditional
hierarchical file systems ([23]), the namespace is flat in object-based storage and consists
of a number taken from some set of integers. Allowance is made for direct client access
to the storage, taking away the bottleneck of traditional file servers [28-30, 34, 35, 64]. A
metadata server takes the place of that traditional file server to control access to storage.
To allow the metadata server to control access to the storage without being queried for
every access, most systems use capabilities, a type of authorization token popularized in
the 1970°s [5, 10].

The object-based storage discussed in this dissertation is different from object-oriented
programming and persistent object systems as described in these sources [4, 7, 9, 22, 41,
51, 59, 74]. Garbage collection and inheritance of properties between objects, for example,
are design goals of object-oriented systems that we are not concerned with.

2.2 Broader references

Various academic or industrial research projects have supported snapshots and forks in
various forms; we only present a few of these here although the features are widespread.
The Venti archival storage system never overwrites data, allowing for snapshot file systems
to be easily built on top of it [61]. Snapshots of block-based distributed storage were
supported in Petal [50], which was used to build the Frangipani [76] file system. The
“Mime” block-based storage system from Hewlett Packard also supported snapshots [16].

CHAPTER 2. BACKGROUND AND RELATED WORK 9

The Federated Array of Bricks (FAB [27]) prototype at Hewlett Packard implements a
distributed agreement protocol to quickly make snapshots and forks of its distributed block-
based storage [3].

Snapshot support in databases evolved from the use of logging for transaction sup-
port [2], as the transactions could be rolled-back to any point in time to examine the con-
tents of the database [55, 72]. Databases also inspired the atomic transactional nature of
our bulk operations [36].

The atomicity of database transactions transitioned into the realm of data storage sys-
tems. Various systems from the 1980s supported atomic actions on groups of files [12, 33,
52,53, 62, 63, 77]. A summary of many such atomic update storage systems is presented
in [75]. Later, atomic updates were applied to logical disks underlying file systems [37].

The roots of the experimental clustered, object-based storage system presented in this
dissertation can be found in a distributed block-based storage system. That system, PA-
SIS [1, 81], was built atop versioning storage nodes and presented a protocol that ensured
consistent access to clients in the face of access concurrency.

We have also borrowed the concept of access capabilities that were applied to storage
systems in the 1970’s [5, 10] for controlling access and metadata freshness. They have
become fairly standard features of systems where clients can directly access object-based
storage [28-30, 34, 35, 64].

Our use of external assignment of object identifiers from a flat namespace fits a possibil-
ity for naming outlined in various resource-naming taxonomies [47, 68, 82]. The practice of
encoding information in object identifiers, in our case to indicate directory and snapshot/-
fork membership, has been used in storage systems for some time to indicate information
about the storage locations of data [20, 59]. It is common practice for NFS [14, 58, 73]
servers to embed inode numbers in the filehandles (used to uniquely identify files) ex-
changed with clients; in fact, we plan to use object identifiers as primary components of
filehandles.

Similar to the distributed systems problem of providing serialized and consistent ac-
cess, creating snapshots (distributed agreement of state) is also a general problem [15, 71].
By centralizing the bulk operation instantiation responsibility in the object manager, this

CHAPTER 2. BACKGROUND AND RELATED WORK 10

storage system avoids distributed system problems associated with distributed consensus
algorithms [13, 38, 48, 49, 60, 69].

2.3 Cloning, snapshots and storage management

For object-based storage to compete in the marketplace, it must approximate the features
of established products. One feature that is trickling-down from high-end to mid-range
storage systems is the ability to make a point-in-time copy of a storage system [67]. These
copies are variously called snapshots, forks and clones. For our purposes, a snapshot will
be a read-only copy, a fork will be a read-write copy, and a clone can refer to either.

These storage system clones ease various management tasks associated with business-
critical storage systems. Copies of data are commonly used for disaster prevention/recov-
ery, archive, error recovery and system testing. With a clone of storage, a consistent view
can be statically maintained for the duration of a copy operation. A clone operation that
executes quickly, while storage is online, and atomically in the face of concurrent access,
is of great value for these purposes. Early implementation of clone operations occurred in
the Andrew File System [40]. Notable commercial success with storage system snapshots
was achieved by NetApp, nee Network Appliance [39]. Making system snapshots with
write-once storage has also been shown to be feasible [61].

A standard for OSD-2 has propagated through the standards committees of the SNIA
Object-Based Storage Devices working group and ANSI T-10 [42, 79]. Standardized com-
mands allow for the creation of “snapshots” and “clones” of partition objects. These objects
are linked together with special entries in their “attribute pages” to form chains [11, 43].
When creating these new partitions, options exist for them to be created as copy-on-write
versions of their source or as complete byte-by-byte copies. The commands can be long-
running with completion noted as a percentage observable in an attribute of the partition.
That work differs from this dissertation’s approach in four ways. First, we are concentrat-
ing on coordinating a *“snapshot” or “clone” operation across multiple storage nodes and
using heterogeneous data distributions, while their specification applies to a single storage
device. Second, we provide for atomicity of a rapidly executed operation, while they spec-

CHAPTER 2. BACKGROUND AND RELATED WORK 11

ify a long-running operation that may partially complete. Third, we do not expose tracking
between source and destination object sets, while they have attribute pages to indicate that
history. Fourth, we allow for operations to occur on any objects in the storage system,
while they operate only upon “partition objects” which contain many objects.

2.4 System components

The storage system for which we are constructing bulk operations serves data stored in ob-
jects and accessed through cooperation between three primary components: clients, storage
nodes and a metadata server. These components are connected by a network and the algo-
rithms for successful operation are distributed across each of the components involved in
an operation.

Clients exchange metadata with the metadata server and directly access data on the
storage nodes. The metadata server manages metadata and controls access by employing a
capability-based access control mechanism. Storage nodes execute client requests to read
or write data when presented with valid capabilities.

We next present information about the object model for the system architecture on
which we focus, and the data distributions by which the data for an object is stored.
What follows are component descriptions addressing the characteristics, responsibilities
and functioning of each component, along with example programming interfaces. These
descriptions are provided to set the stage for the introduction of bulk operations into a
distributed, object-based storage system built around these components.

2.4.1 Objects

An object is a named container for a byte-stream. An object has a name, or object identifier
(OID), selected from an object identifier namespace. The object identifier namespace, or
namespace, consists of unsigned integers of some power-of-two number of bits in size.
For this work, we assume the object identifiers of 128 bits. For this work, we assume
that the object names are selected by clients. The methods described for implementing bulk
operations later in the dissertation rely on this aspect of object naming.

CHAPTER 2. BACKGROUND AND RELATED WORK 12

Client Node

Storage Nodes

Figure 2.1: System model
A distributed, object-based storage system consists of a metadata server, clients, and stor-
age nodes. Clients exchange metadata with the metadata server before interacting directly
with storage nodes to access data.

The byte stream component of an object contains raw data that can be written and read.
Bytes are addressed starting first at the zero byte and proceeding to the end of the byte-
address space. An object’s byte stream can be addressed similarly to that of a file, from
bytes 0 through 284 — 1 (for a 64 bit address space). When accessing the byte stream, the
object identifier of interest is supplied along with the desired byte stream offset and an
indication of the number of bytes of information to be accessed. In this sense, the object
identifier serves as a sort of file handle or file descriptor, and addressing of the bytes of the
object proceeds just as is done with files.

The attributes of an object may be very limited. We assume that attributes consist of the
object identifier, the length of the byte stream, and a logical create time at the very least.
The object identifier and byte stream have been discussed in the preceding paragraphs. The

CHAPTER 2. BACKGROUND AND RELATED WORK 13

logical create time is maintained to establish a relative ordering for operations that impact
the evolution of the object identifier namespace. There is a single logical clock used in the
system to timestamp the creation of objects and the execution of bulk operations. Using
these timestamps for comparison is a key component of the bulk operation algorithms used
to disambiguate cases of object (non-)existence.

2.4.2 Capabilities

Our implementation of bulk operations relies on the use of capabilities to control access to
objects. A capability is a token (represented by a sequence of bytes) presented along with
a request to prove that authorization has been given to perform an action. In the physical
world, a movie ticket can be considered a capability: you present the ticket to prove that
you have access to a particular theater to view a movie. In the distributed storage system
sense, a capability is a data structure authorizing access to an object.

For the purposes of this dissertation, there are two important aspect of capabilities. The
first is their ability to authorize clients’ access to data on the storage nodes. The second is
the ability of the metadata server to revoke that access by contacting the storage nodes.

In distributed, object-based storage, capabilities are completely under the control of
the metadata server as shown in Figure 2.2 on page 14. The metadata server is the only
entity that may issue and revoke capabilities. Clients request capabilities when they acquire
metadata to access objects at the storage nodes. The storage nodes check that capabilities
are valid when they receive them along with a read or write request. When necessary,
the metadata server contacts storage nodes and informs them that some capabilities should
no longer be honored. If a client attempts to use an invalid capability, it is informed that
its request cannot be completed because the capability is invalid. The logic of the client
library, when receiving such a message, contacts the metadata server for a fresh capability
and metadata before retrying an operation.

CHAPTER 2. BACKGROUND AND RELATED WORK 14

client metadata server storage node

GetCap(object)
success, cap

Access(cap,|object, args)

sucgess

Revoke(object)

success

Access(cap,|object, args)

failure, invalid cap

GetCap(object)

success, cap

Access(cap,|object, args)

sucgess

Figure 2.2: Capability acquisition and use
This protocol exchange shows a client acquiring and using capabilities. The metadata
server then revokes capabilities. When the client uses invalid capabilities, it re-acquires
them and continues with access.

2.4.3 Data distribution

An extent is a range of bytes within the byte stream of an object. Each extent can have its
own data distribution which specifies a block size, a block encoding algorithm, a set of
threshold encoding parameters, and an ordered list of storage node addresses. The infor-
mation of a data distribution is used by the client library to read and write data. It is stored
in the metadata server, where it can be accessed by clients. An example data distribution
for an object is shown in Figure 2.3 on page 15

The block size of a data distribution specifies the number of bytes over which the block
encoding algorithm will be applied. The block size is variable so that it might match the
common access sizes of client applications.

CHAPTER 2. BACKGROUND AND RELATED WORK 15

Object
Byte Stream

Data Distribution X Data Distribution Y
Block size = 16 kB Block size = 32 kB
Encoding = 1-0f-2 Encoding = 2-0f-3

Storage Nodes A, C Storage Nodes A, D, B

Replica

Replica) I

Storage
Nodes

Figure 2.3: Multiple data distributions for a single object

A pictorial example of the data stream of a single object whose data stream has two ex-
tents and hence two different data distributions. Of the six total blocks comprising the data
stream, four have one distribution and two have another distribution. The resulting frag-
ments for one block of each distribution are shown: distribution X fragments are the same
size as the block because each holds a full copy of the data, distribution Y fragments are
each one-half the size of the block because of the 2-of-3 encoding. The resulting fragments
are spread across the storage nodes of the distributed, object-base storage system.

The block encoding algorithm is an enumerated type that acts as an index into a set of
functions for encoding and decoding the data. It is parameterized by the threshold encoding
parameters. Different algorithms (e.g., replication, striping and parity, and secret sharing)
are available to match performance and confidentiality requirements.

The threshold encoding parameters describe the number of equal sized fragments (the
n parameter) into which the block is broken and, in the simplest case, the number of those
n fragments necessary to reconstruct the data during a Read operation (the m parameter).

CHAPTER 2. BACKGROUND AND RELATED WORK 16

These m-of-n encodings, where m is less-than or equal-to n, break a block into n fragments
of which m must be fetched during a successful Read operation. For any block of data,
there are n fragments of size PIOCKSIZE gngj go Deblock-size pyes gre stored, incurring a storage
blow-up of . As familiar examples of these m — of — n parameters, consider mirroring,
striping and parity schemes. Mirroring is a 1-of-n configuration that has a blow-up of 7
and where any one fragment constitutes a complete copy of the data for a block. Striping
is a n-of-n configuration, where the data is broken up and spread evenly across storage
has a blow-up of } = 1. Parity schemes are more rightfully termed m-of-n schemes and
provide redundant information to the tune of the difference between m and n, usually with
m fragments of striped data and (n — m) fragments of parity data.

The list of storage nodes provides the information necessary for a client to contact the
correct storage nodes when reading or writing data. Some block encoding algorithms, like
parity schemes that prefer to access the striped fragments and save on parity calculations,
use this ordered information to opportunistically take short-cuts through their encode/de-
code code paths.

2.4.4 Client

Clients are the driving force of the storage system; very little happens that is not directly
driven a client. There may be many clients, or few; they could reside on one physical
computer or on many. They might use the storage system directly (e.g., a database storing
tables and indices in objects) or indirectly on behalf of others (e.g., an NFS server storing
files and directories in objects). Clients are assumed to be heterogeneous and are connected
to the storage nodes and metadata server via a network.

Clients view the distributed object-based storage system as a set of named objects with
each object providing a byte-addressable data portion. They drive the evolution of the
object-identifier namespace by creating and deleting objects. When creating objects, the
client specifies the object identifier to be used. They can observe the state of the namespace
by enumerating its contents. The byte-stream component of objects is modified with write
commands and observed with read commands.

CHAPTER 2. BACKGROUND AND RELATED WORK 17

Internally, a client translates calls to its own API into calls to the metadata server and
to storage nodes. Creating and deleting of objects are operations on the metadata server.
When reading or writing objects, metadata manipulation is done via communication with
the metadata server and data access, using that metadata, proceeds directly between the
client and the appropriate storage nodes. Metadata cached at the client contains a capability
that is sent along with requests to storage nodes. Provisions are made for clients to choose
the data distribution of the data portion of objects.

API

These are the functions that a client application can call to interact with the storage system.

Create(OID) If the object does not already exist in the object identifier namespace, add
it as an empty object of zero-length.

Delete(OID) If the object exists, remove it from the object identifier namespace and make
its data inaccessible.

Enumerate(start_OID, end_OID, num_objects) Return a list of at most num_objects
starting from start_OID up to end_OID.

Write(OID, offset, length, buffer) Write to the byte-stream component of object OID at
the given offset the contents of buffer up to the given length.

Read(OID, offset, length, buffer) Read the byte-stream component of object OID at the
given offset and for the given length; return the data in the provided buffer.

2.4.5 Storage node

Storage nodes are, primarily, passive elements in the storage system. They may be hetero-
geneous in capacity, throughput and responsiveness. A storage node may protect data by
storing redundant information, or it may not. A network connects storage nodes to the other
system components and to each other. They process data requests received from clients. A

CHAPTER 2. BACKGROUND AND RELATED WORK 18

storage node uses information received from the metadata server when making decisions
about allowing client access to proceed.

Storage nodes are responsible for storing data. They react to requests received from
clients to read or write data. A request to write an object for which a storage node does
not already hold data results in an implicit “create” of that object on the storage node.
Capabilities sent along with the requests serve as authorization for the operation. If the
storage node receives invalid capabilities along with a client request, the operation is not
performed and an error message is returned.

The metadata server controls access to data by exercising control over the validity of
capabilities and by removing objects from storage nodes. The metadata server may contact
storage nodes to inform them that some set of capabilities that may be held by clients are
no longer valid. These invalidation requests cause the storage node to update its capabil-
ity tracking information. Deleting objects from storage nodes is explicitly performed by
messages sent by the metadata server.

Internally, a storage node tracks three kinds of information. First, it knows the object
identifiers for which it holds data. When a valid write request arrives for an as-yet-unknown
object identifier, an implicit “create” of the object will occur. Second, for each data location
of the objects, the storage node associates some data. This data is set by write commands
and can be retrieved with read commands. Third, storage nodes track information about
which capabilities are valid and which are invalid. This information is consulted for each
read or write access; any use of invalid capabilities returns an error to the calling client.

API

This is the set of commands addressable to storage nodes. Clients use the SSIO_Write()
and SSI0_Read() commands. The MDS uses the Delete() and Revoke() commands.

SSIO_Write(capability, OID, location, buffer) For the object with the given OID, store
the contents of buffer at the given location if the capability is valid. This is a low-level
command used by the client-visible Write command.

CHAPTER 2. BACKGROUND AND RELATED WORK 19

SSIO_Read(capability, OID, location, buffer) For the object with the given OID, return
in the given buffer the data maintained for the given location if the capability is valid.
This is a low-level command used by the client-visible Read command.

Revoke(OIDs) For the objects with the named OIDs, ignore all capabilities granted pre-
viously.

Delete(OID) Make all data locations maintained for the given OID become inaccessible.

2.4.6 Metadata server

The metadata server is a centralized entity that manages the object-identifier namespace
and the metadata for each object. There may be many systems cooperating in a cluster to
act as a single logical metadata server, or there may be a single system. There is network
connectivity between the metadata server and all clients and all storage nodes.

The metadata server is responsible for managing the object-identifier namespace and
the metadata for each object. Information about the (non-)existence of objects is main-
tained. For each existing object, metadata is stored. Clients are forced to use common data
distributions when concurrently writing regions of objects through the use of an intention
logging system. An intent to write data to a new region of an object using a particular data
distribution is logged via the ApproveWrite operation. If successful, this returns a capa-
bility. If a client proposes an ApproveWrite with a data distribution that conflicts with an
already successful ApproveWrite, the already successful data distribution is returned and
the client may then re-try with the new information. After writing to storage nodes, clients
execute FinishWrite calls to indicate that data for a region of an object is now available.

The metadata server maintains three sets of information. First, there is an object
database that tracks the existence of objects, which is modified whenever objects are cre-
ated or deleted. Second, there is a metadata database to hold metadata information for those
existing objects that contain data. Third, there is a PendingWrite database holding the set
of approved metadata for writing to new regions of existing objects. Each ApproveWrite
operation can add metadata here, and FinishWrite operations move that metadata to the
metadata database. Delete operations result in capability revocation messages being sent to

CHAPTER 2. BACKGROUND AND RELATED WORK 20

storage nodes, but actual removal of data at storage nodes can wait until an object identifier
is re-used.

API

These are the commands to which the metadata server responds.

Create(OID) Add an object with the given object identifier to the namespace.

Delete(OID) Remove the object with the given object identifier from the namespace,
making any of its data inaccessible.

Enumerate(start_OID, end_OID, num_objects) Return a list of at most num_objects
starting from start_OID up to end_OID.

ApproveWrite(OID, data_distribution) Log an intent to write data for the object with
the given object identifier with the given data distribution.

FinishWrite(OID, data_distribution) Register completion of writing to the object with
the given object identifier for the specified data distribution.

Lookup(OID, offset, num_bytes) Retrieve a capability and the data_distribution infor-
mation necessary to read and write the object with the given object identifier.

Chapter 3
Delayed instantiation bulk operations

This chapter presents features of a delayed instantiation bulk operation design within a
distributed, object-based storage system. First, the we consider the options for placement
of responsibility for carrying out bulk operations within the system. Second, grouping
of objects into units suitable for bulk operations is discussed. Third, we present desired
characteristics of two bulk operations: BulkClone and BulkDelete. Fourth, the options for
instantiation of bulk operations are considered. Fifth, we offer two strategies for tracking
uninstantiated bulk operations. The chapter finishes with considerations for successful
completion of bulk operations and ways to mitigate the costs associated with them.

3.1 Placement of responsibility

As we consider the design of bulk operations within a distributed, object-based storage
system, we must decide where the responsibility for enforcing semantics will lie. There are
three places where responsibility might be assigned based on the need to act simultaneously
on many objects: at the client, at the storage nodes or at the metadata server. Each of these
locations has its merits, and shortcomings, which we present in the following sections.

There are many practical concerns to address while considering the placement of func-
tionality. Not all of these are addressed in the following discussion, but they serve as guides
for the decision making process.

21

CHAPTER 3. DELAYED INSTANTIATION BULK OPERATIONS 22

System startup How is the mechanism bootstrapped?

System shutdown How does the system shutdown cleanly?

Recovery and repair If there is an error, how is it detected and corrected?
Performance What are the performance implications?

Administration How is the mechanism managed?

Data sharing What information is shared through the system and how is it shared?
Component join/leave What happens as components join and leave the system?

Externally initiated operation Can an external entity trigger the mechanism and to what
effect?

Comprehensibility of semantics Are the semantics of the mechanism easy to reason about?

Abstraction s the level of abstraction appropriate?

3.1.1 Bulk operations at the storage nodes

Performing bulk operations at the storage nodes concentrates responsibility at the lowest
level of a distributed, object-based storage system. This is the approach being pursued
by the SNIA OSD working group through the ANSI T-10 committee [11]. As all data is
maintained by the storage nodes, they are closer to it than the metadata server or clients
when it comes time for a bulk operation. The one distinct advantage is that there is no need
for capability revocation from clients when a bulk operation is performed, and performing
copy-on-write is straightforward.

There are too many complexities to consider bulk operations at storage nodes as a Vvi-
able option in our situation. Issues of heterogeneity, permission, namespace management,
recovery and feature implementation must be overcome.

A concern with placing responsibility for bulk operations at storage nodes has to do
with object existence: since the metadata server tracks object existence, how can storage

CHAPTER 3. DELAYED INSTANTIATION BULK OPERATIONS 23

nodes know what objects to clone? Besides that, each storage node can have a different
view of the contents of the storage system: its local view. Coordinating the set of objects
to be cloned (or deleted) across many storage nodes is the issue.

In large distributed systems, the set of active components can be changing from moment
to moment. Faulty components, decommissioning of old components and commissioning
of new components all change the set of participants at largely unpredictable times. If a
storage node misses a message to execute a bulk operation, how will the system handle that?
After taking a storage node out of service for repair, it must re-join the system and somehow
be populated with information it may have missed. Should logs of missed messages be
maintained? Should storage nodes be wiped and re-commissioned any time they re-join?
How will this re-commissioning affect the reliability and availability of stored data?

Our system model is designed around an assumption that storage nodes are heteroge-
neous in their characteristics, in their contents, and in their security. Some storage nodes
are expected to have greater processing power and/or capacity, for example. Executing
bulk operations at storage nodes, therefore, could lead to drastically different service times
observable by the caller. There could also be wide variation in service time given that some
storage nodes will hold more objects than others and so could take longer to process a bulk
operation. Also, if storage nodes had heterogeneous software for servicing requests, im-
plementation decisions for that software could lead to variation in service time. Varying
levels of security throughout a large system lend themselves to the use of m—of —n data
encodings, such as information dispersal algorithms, to spread information across storage
nodes that may be (or may become) compromised.

The initial storage nodes taken as members for the distributed, object-based storage
system were very simple and performed well enough. To add the necessary code to solve
the issues presented in the preceding paragraphs would certainly destabilize their position
in the system. And, the interfaces would be very difficult to standardize — the OSD-2
standardization effort avoided issues of multi-OSD consistency. As such, it was decided
not to pursue the path of making storage nodes responsible for handling bulk operations.

CHAPTER 3. DELAYED INSTANTIATION BULK OPERATIONS 24

3.1.2 Bulk operations at the client

Having the client library responsible for bulk operations presents challenges in that it
creates “silos” of objects. If a client library is tracking bulk operations (BulkClone and
BulkDelete) then only that one client knows about the (non-)existence of objects. This
complicates sharing of objects between clients as each client would be delegated control
over some portion of the object identifier namespace. Yet, such sharing is one of the reasons
for object-based storage to exist.

There are two advantages to this approach. First, there is no need for the capability re-
vocation of the metadata server approach. Clients would not have to re-acquire capabilities
after bulk operations. Second, only those clients that require bulk operations will have to
deal with them. Only they will need to execute code paths concerned with bulk operations.

Client managed bulk operations would be very portable to different storage systems.
When they are implemented in a library, there are no particular dependencies on the storage
system for assistance in carrying them out. In the absence of a Clone primitive at storage
nodes, a client library could make a copy of an object by reading from a source object and
writing to a new destination object.

However, the storage system could lose track of quota issues by delegating control to
clients. It would need a back-channel to query clients to know how many objects were
in-use and what capacity was being consumed.

Also, situations of client failure would require Enumerate() calls to figure out if objects
existed in the storage system as compared to what their data structures indicate. Any cor-
ruption of state on a client could destroy the tracking structures for bulk operations and
place the namespace in an unknown state. And, that approach would clearly not work with
untrusted clients.

3.1.3 Bulk operations at the metadata server

Bulk operations as the responsibility of the metadata server can avoid many of the com-
plications of the other two approaches, but comes with performance costs associated with
capability revocation and re-acquisition. Both the client library and storage node based ap-

CHAPTER 3. DELAYED INSTANTIATION BULK OPERATIONS 25

proaches avoid these costs. However, the other characteristics of delayed instantiation bulk
operations managed at the metadata server prevail when considering feasibility in practice.

With control at the metadata server, there is a centralized location for managing bulk
operation information. This approach avoids having many clients or many storage nodes
trying to coordinate bulk operations amongst one another. The metadata server knows what
bulk operations have been executed and can handle their instantiation appropriately.

As a necessarily secure and trusted portion of the storage system, the metadata server
can be expected to faithfully carry out bulk operations. If bulk operations were managed at
untrusted clients, then the storage system may not be stable. Similarly, if a faulty storage
node were managing bulk operation information, it could corrupt an entire storage system.

The metadata server is already responsible for managing the object identifier namespace
through the Create and Delete operations. The addition of BulkClone and BulkDelete,
which also manipulate the namespace, is a logical progression. The metadata about objects
affected by bulk operations also places it in an ideal location for handling instantiation:
with information already on hand, it is easy to contact the necessary storage nodes to make
a clone or delete an object.

3.2 Grouping objects

For the bulk operations proposed in this dissertation, there must be a way to form groups
of objects that are specified as arguments. Groups can be formed in many ways. Whatever
method is chosen, however, should allow for easy changes to a group’s membership. Also,
it should be easy to communicate the group as an argument to a function. For the sake of
BulkClone, it should be straightforward to map objects from a source group to a destination
group.

We propose to group objects as a range of object identifiers. Communicating a range-
based group is as easy as sending two object identifiers, one representing the start, and
another the end, of the range. A range can represent all objects or a single object (start
equal to end). Membership of this type of grouping can be readily changed by altering

CHAPTER 3. DELAYED INSTANTIATION BULK OPERATIONS 26

the objects to which one is referring, and moving objects around in the object identifier
namespace (should it be necessary) can be accomplished with bulk operations.

Other ideas for forming groups of objects were considered but rejected.Presenting lists
of objects communicated as arguments was deemed too cumbersome for large sets. The
possibility of maintaining sets at the metadata server and referencing those sets in function
calls was discarded because of the communication necessary to manage the sets, a need
for access control for referencing and changing membership, and set-membership issues
(could an object be in more than one set?). Forming object sets on the fly by referencing
object attributes would be possible if the attribute set on our objects were richer, but such
an approach nas many open questions beyond the scope of this dissertation.

3.3 BulkClone

The BulkClone operation creates copies of all objects in a source set into a destination
set. For our case of range-based bulk operations, objects are mapped one-to-one from a
source object identifier range to a destination object identifier range®. To be successful, a
BulkClone starts with some objects in the source range, and no objects in the destination
range; the ranges must not overlap.

BulkClone(source_set, destination_set) Make objects of the destination set appear as
copies of corresponding objects in the source set.

It might be reasonable to restrict the ranges used as arguments for a BulkClone. One
might consider disallowing objects in destination ranges from being mentioned in source
ranges. Such a restriction would simplify the logic applied to the bulk operation track-
ing structures, but would also force system users along particular usage paths. With only
restrictions on sources being occupied and destinations being empty, two interesting and
compatible usage scenarios emerge as shown in Figure 3.1 on page 27: prolific clones and
chains-of-clones. A prolific clone uses the source range repeatedly as a parent with many
destination ranges as its children. A chain-of-clones uses a previous destination range as

LA range is inclusive and consists of a starting object identifier and an ending object identifier.

CHAPTER 3. DELAYED INSTANTIATION BULK OPERATIONS 27

the source range for subsequent BulkClone operations thus creating a chain where each
clone operation forges a new link.

——

—

Example of a prolific clone: source remains constant.

A B C D
- >

Example of a chain-of-clones: prior destination is next source.

Figure 3.1: Two manners of using the clone operation
The original source set of objects is labelled “A”. Each clone operation is represented by
an arrow pointing from source to destination set of objects.

The main motivation for providing the BulkClone operation is to support the creation
of storage system snapshots. After formatting a file system in a set of objects (a range of
objects in our case), repeated application of the BulkClone operation can create new copies
of the file system. Any read-only copies become snapshots from which consistent backups
can be made and accidentally deleted files can be recovered. Any read-write copies are
file system forks that may evolve independently from the original file system image. File
system forks provide sandboxes for testing systems on real data or launching near-identical
copies off of a “golden master” system image.

Other possible uses of BulkClone include re-arrangement of the object identifier names-
pace. Such an operation could merge object sets from dis-joint portions of the namespace
by cloning them such that they are adjacent and can be managed as a single, range-based
set. One could also create super-objects by taking objects adjacent in the namespace and
using each for specific attributes — this would be like extended attributes in Microsoft Win-
dows NTFS and NFSv4, or resource forks in Apple file systems. Then, by using BulkClone,
the entire super-object could be moved through the namespace as necessary. Similarly, a

CHAPTER 3. DELAYED INSTANTIATION BULK OPERATIONS 28

group of adjacent objects might represent the contents of a directory (or even a directory
tree) in a file system and a snapshot of just the one directory could be made.

The instantiation of a BulkClone takes place on those storage nodes holding portions
of the source object according to the object’s data distribution through the use of a single-
object to single-object Clone command. The data distribution of the destination object,
therefore, is inherited from that of the source object such that both objects reside on the ex-
act same storage nodes. Future copy or migrate commands (not covered here) might move
the objects off of those storage nodes. It is assumed that for speed and space efficiency,
a storage node will have a copy-on-write implementation of the one-to-one Clone opera-
tion. During the course of access to cloned objects, it is possible that a storage node might
exhaust its capacity and require a redistribution of an object to other storage nodes.

3.4 BulkDelete

The BulkDelete operation removes a set of objects from the object identifier namespace
and, ultimately, frees resources consumed by those objects on storage nodes. For our case
of range-based bulk operations, objects within a supplied target range are removed. A range
can span all objects. A successful BulkDelete operation has objects in its target range.

BulkDelete(target_set) Delete all objects appearing in the target_set of object identifiers.

A primary motivation for providing the BulkDelete operation is to support the cleaning
of objects created by BulkClone operations. Thus, a BulkClone that created a snapshot of
a file system can be removed all at once with a single BulkDelete operation.

Additional uses of BulkDelete match other uses for BulkClone. If BulkClone is used
to merge object sets by moving them around the namespace, then BulkDelete can clean up
the source object sets. If an application were to use super-objects, a BulkDelete would be
the most efficient way to delete a super-object. For a file system that groups files within
directories as adjacent objects, a range-based BulkDelete operation could quickly delete a
directory.

CHAPTER 3. DELAYED INSTANTIATION BULK OPERATIONS 29

The instantiation of a BulkDelete takes place on those storage nodes holding portions
of the object being deleted with a single-object Delete command. The capacity consumed
by the deleted object, and its object identifier in the namespace, can then be reclaimed.

3.5 Delayed instantiation

The instantiation of a bulk operation is the act of enforcing the effect of that bulk operation
upon a single object at the storage nodes. Instantiating a BulkClone entails instructing
storage nodes to copy an object. Instantiating a BulkDelete entails instructing storage nodes
to delete the object. To preserve the semantics of our bulk operations, a clone must be
instantiated before subsequent changes can occur to the object being cloned. A delete must
be instantiated before an object with the same object identifier can be created.

There are a few options for when instantiation of a bulk operation might be performed.
A system might use immediate instantiation and cause a bulk operation to take effect before
returning to the caller. This could be troublesome to users of the storage system, because
their request could take a long time to return as would be the case when dealing with a
large set of objects. A client would be secure, however, in knowing that the requested
operation was applied to all targeted objects. An alternative, which we explore in this
dissertation, is to use delayed instantiation of bulk operations. With this strategy the storage
system promises to enforce the effects of the bulk operation but has the option to delay the
work needed until a client might observe the bulk operation’s effect. When using delayed
instantiation, a success code can be quickly returned to the caller, while the work of the
operation is performed later. Under delayed instantiation, when a client accesses an object
affected by a bulk operation, an on-demand instantiation is performed before the client’s
request is allowed to proceed. This adds latency to the client’s operation, but has delayed
work in the storage system until it is strictly required. If a clone is deleted before it is
instantiated, then the work never has to be performed. With delayed instantiation, the
storage system may elect to perform background instantiation during idle time to save on
the added latency of on-demand instantiation.

CHAPTER 3. DELAYED INSTANTIATION BULK OPERATIONS 30

Examples of how delayed instantiation can work are shown in Figure 3.2 on page 30.
There we see that instantiation always occurs before a client observes the effects of a bulk
operation. The instantiation can occur before or after a return code is sent back to the caller.

Metadata server
instantiates
bulk operation

Client observes
bulk operation
effects

Metadata server
commits to performing
bulk operation

Begin

Client receives
bulk operation
return code

Metadata server
instantiates
bulk operation

Client observes
bulk operation
effects

Metadata server
commits to performing
bulk operation

Begin

Client receives
bulk operation
return code

Metadata server
instantiates
bulk operation

Client observes
bulk operation
effects

Metadata server
commits to performing
bulk operation

Begin

Client receives
bulk operation
return code

Figure 3.2: Bulk operation process
These are three variations on when bulk operations can be processed and observed by
clients. The two paths correspond to two semantic guarantees associated with operation
execution: an operation is applied sometime between when it is requested and it is observ-
able as having taken place; operation execution confirmation must follow the request for
an operation.

Using delayed instantiation in a distributed, object-based storage system provides sev-
eral benefits. First, the system can quickly return a success code to the caller since the work
will be delayed. Second, the system can save work, since bulk operations are not required
to be instantiated if a client never accesses the affected objects.

CHAPTER 3. DELAYED INSTANTIATION BULK OPERATIONS 31

Delayed instantiation is used throughout computing. One example is copy-on-write
where multiple references to a single data structure split to become refer